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Abstract

The transient flow and heat transfer on a moving surface in a rotating fluid in the presence of a magnetic field have

been investigated. The unsteadiness in the flow field has been introduced by the sudden change in the surface velocity or

the fluid angular velocity. The parabolic partial differential equations governing the unsteady flow and heat transfer

have been solved by using an implicit finite-difference scheme in combination with the quasilinearization technique.

The computations have been carried out from the initial steady state to the final steady state. The effects of the sudden

change in the surface velocity on the flow and heat transfer are found to be more significant than those of the impulsive

change in the angular velocity of the fluid. When the surface velocity is suddenly reduced, the surface shear stress is

found to vanish in a small time interval after the start of the impulsive motion, but it does not imply flow separation.

The surface shear stress for the primary flow increases with the magnetic field and the fluid angular velocity, but the

surface heat transfer decreases. The surface shear stress for the secondary flow increases with the angular velocity of

the fluid, but decreases with increasing magnetic field.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The flow and heat transfer problem due to a moving

surface in an ambient fluid is important in many indus-

trial processes such as the cooling of a hot metallic plate

in a cooling bath, the extrusion of a plastic sheet, glass

blowing, continuous casting and spinning of fibers. Saki-

adis [1] was the first to study the flow induced by a sur-

face moving with a constant velocity in an ambient fluid.

The corresponding heat transfer problem was consid-

ered by Tsou et al. [2]. Crane [3] studied the same prob-
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lem as in [1], but assumed that the surface velocity varies

linearly with the streamwise distance x (U0 = ax, a > 0).

Subsequently, Carragher and Crane [4] investigated the

corresponding heat transfer problem.

In recent years, problems involving magnetic field

have become important. Many metallurgical processes

such as drawing, annealing and tinning of copper wire

involve the cooling of continuous strips or filaments by

drawing them through an ambient fluid. By drawing

these filaments in an electrically conducting fluid under

the influence of an applied magnetic field, the rate of

cooling can be controlled. The flow and (or) heat trans-

fer over a moving surface in the presence of a magnetic

field have been investigated by Chakrabarti and Gupta

[5], Andersson [6], Vajravelu and Hadjinicolaou [7],

Pop and Na [8] and Kumari and Nath [9]. Wang [10]
ed.
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Nomenclature

a velocity gradient, s�1

B magnetic field, kg1/2m�1/2 s�1

Cfx local skin friction coefficient for the primary

flow

Cfz local skin friction coefficient for the second-

ary flow

f dimensionless stream function

f 0 dimensionless velocity for the primary flow

L characteristic length, m

M dimensionless magnetic parameter

Nux local Nusselt number

Pr Prandtl number

Rex local Reynolds number

Rem magnetic Reynolds number

s dimensionless velocity for the secondary

flow

t time, s

t* dimensionless time

T temperature, K

Tw wall temperature, K

T1 ambient temperature, K

u, v, w velocity components along x, y and z direc-

tions, respectively, ms�1

U surface velocity at t > 0, ms�1

U0 surface velocity at t = 0, ms�1

x, y, z Cartesian coordinates, m

Greek symbols

a thermal diffusivity of the fluid, m2s�1

�1, �2 dimensionless constants

g dimensionless transformed coordinate

h dimensionless temperature

k dimensionless angular velocity of the fluid

l coefficient of fluid viscosity, kgm�1 s�1

l0 magnetic permeability

m kinematic fluid viscosity, m2s�1

q density of the fluid, kgm�3

r electrical conductivity, m�2 s

X angular velocity of the fluid at t* > 0, ms�1

X0 angular velocity of the fluid at t* = 0, ms�1

Subscripts

i, w, 1 initial conditions, conditions at the wall and

ambient conditions, respectively

t, x, z derivatives with respect to t, x and z, respec-

tively

Superscript
0 prime denotes derivative with respect to g
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has studied the flow over a moving surface in a rotating

fluid. These studies deal with steady flows. However, in

many situations, the flow may be unsteady due to the

sudden change in the surface velocity or fluid angular

velocity. Takhar and Nath [11] have obtained self-simi-

lar solutions of the unsteady flow and heat transfer over

a stretching surface in the presence of a magnetic field

where the surface velocity and the angular velocity of

the fluid vary inversely as a linear function of time.

The boundary layer flow and heat transfer problem

over a moving surface differs from that over a stationary

surface caused by the free stream velocity due to the

entrainment of the fluid. The moving surface prevents

or delays the separation of the boundary layer from

the wall by injecting momentum in the existing bound-

ary layer. The surface shear stress and the heat transfer

for the moving surface are found to be about 50% higher

than those of the classical boundary layer flow over a

flat plate. The magnetic field and the rotation of the fluid

increase the surface shear stress for the primary flow, but

reduce the surface heat transfer. On the other hand, the

magnetic field and the rotation of the fluid exert oppo-

site effect on the surface shear stress for the secondary

flow. Hence, the unsteady flow over a moving surface

in a rotating fluid in the presence of a magnetic field is

an interesting problem.
The aim of this analysis is to study the transient flow

and heat transfer characteristics over a moving surface

in a rotating fluid in the presence of a magnetic field.

We have considered the situation where there is an ini-

tial steady state which is perturbed by suddenly chang-

ing the surface velocity U0 to U or the angular velocity

of the fluid X0 to X. This impulsive change causes

unsteadiness in the flow field. The parabolic partial dif-

ferential equations governing the flow and heat transfer

have been solved by using an implicit finite-difference

scheme in combination with the quasilinearization tech-

nique [12,13]. The computations have been carried out

from time t = 0 to the final steady state. The results have

been compared with those of Wang [10]. The present re-

sults will be useful in controlling the growth of the sec-

ondary flow caused by the rotation of the fluid by

applying magnetic field.
2. Formulation and analysis

Let us consider the unsteady motion of a viscous

incompressible electrically conducting fluid induced by

suddenly moving the surface with a constant velocity

U from its initial steady-state value U0 or by impulsively

changing the angular velocity of the fluid to X from its
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initial value X0. These sudden changes introduce

unsteadiness in the flow field. The surface coincides with

plane z = 0 and it is moved with a constant velocity U in

x direction. The fluid is rotating with a constant angular

velocity X about the z-axis. The moving surface is also

rotating with the fluid. The flow is three-dimensional

due to the presence of the Coriolis force. The surface

temperature and the fluid temperature at the edge of

the boundary layer are constants. Fig. 1 shows the coor-

dinate system, where x, y and z are the Cartesian coor-

dinates and u, v and w are the velocity components

along x, y and z directions, respectively. Since the flow

is induced by the movement of the surface in x direction

only, the velocity components u, v and w and the temper-

ature T depend on x, z and t. The magnetic field B is ap-

plied in z direction. It is assumed that the magnetic

Reynolds number Rem = l0rVL � 1, where l0 and r
are magnetic permeability and electrical conductivity,

respectively and V and L are the characteristic velocity

and length, respectively. Under this condition it is possi-

ble to neglect the induced magnetic field in comparison

to the applied magnetic field. The external electric field

as well as the induced electric field have also been ne-

glected [14,15]. The viscous dissipation and Ohmic heat-

ing have been neglected in the energy equation. Under

the above assumptions, the unsteady boundary layer

equations based on the conservation of mass, momen-

tum and energy in a rotating frame of reference can be

expressed as [10,11,16].

ux þ wz ¼ 0; ð1Þ

ut þ uux þ wuz � 2Xv ¼ muzz � q�1rB2u; ð2Þ

vt þ uvx þ wvz þ 2Xu ¼ mvzz � q�1rB2v; ð3Þ

T t þ uT x þ wT z ¼ aT zz: ð4Þ
B

z,w

x,u

y,v

UU

Fig. 1. Physical model and coordinate system.
The initial conditions are

uðx; z; 0Þ ¼ uiðx; zÞ; vðx; z; 0Þ ¼ viðx; zÞ;
wðx; z; 0Þ ¼ wiðx; zÞ; T ðx; z; 0Þ ¼ T iðx; zÞ ð5Þ

and the boundary conditions for t > 0 are

uðx; 0; tÞ ¼ U ; vðx; 0; tÞ ¼ wðx; 0; tÞ ¼ 0;

T ðx; 0; tÞ ¼ T w; uðx;1; tÞ ¼ vðx;1; tÞ ¼ 0;

T ðx;1; tÞ ¼ T1: ð6Þ

It is convenient to convert Eqs. (1)–(4) from (x,z, t)

system to (g, t*) system by using the following

transformations

g ¼ ða=mÞ1=2z; t� ¼ at; u ¼ axf 0ðg; t�Þ;

v ¼ axsðg; t�Þ; w ¼ �ðamÞ1=2f ðg; t�Þ;
T � T1 ¼ ðT1 � T wÞhðg; t�Þ; k ¼ X0=a;

U ¼ U 0ð1þ �1Þ; U 0 ¼ ax; X ¼ X0ð1þ �2Þ;
Pr ¼ m=a; M ¼ rB2=qa; ð7Þ

to them and we find that (1) is identically satisfied and

(2)–(4) reduce to

f 000 þ ff 00 � f 02 þ 2ks�Mf 0 � of 0=ot� ¼ 0; ð8Þ

s00 þ fs0 � f 0s� 2kf 0 �Ms� os=ot� ¼ 0; ð9Þ

Pr�1h00 þ f h0 � oh=ot� ¼ 0; ð10Þ

with boundary conditions

f ð0; t�Þ ¼ f 0ð0; t�Þ � ð1þ �1Þ ¼ sð0; t�Þ ¼ hð0; t�Þ ¼ 0;

f 0ð1; t�Þ ¼ sð1; t�Þ ¼ hð1; t�Þ � 1 ¼ 0: ð11Þ

The initial conditions are given by the steady-state

equations along with boundary conditions obtained

from (8)–(11) by putting t* = �1 = of 0/ot* = os/ot* = oh/
ot* = 0. The steady state equations are given by

f 000 þ ff 00 � f 02 þ 2ks�Mf 0 ¼ 0; ð12Þ

s00 þ fs0 � f 0s� 2kf 0 �Ms ¼ 0; ð13Þ

Pr�1h00 þ f h0 ¼ 0; ð14Þ

with boundary conditions

f ¼ f 0 � 1 ¼ s ¼ h ¼ 0 at g ¼ 0;

f 0 ¼ s ¼ h� 1 ¼ 0 as g ! 1: ð15Þ

When the unsteadiness in the flow field is caused by

impulsively changing the angular velocity of the fluid

from X0 to X (=X0(1 + �2)), the equations governing this

case are the same as (8)–(11) except that k in (8) and (9)

is replaced by k(1 + �2) and �1 = 0 in (11). The initial

conditions are given by (12)–(15).

It may be noted that the steady-state equations

(12)–(15) for M = 0 (in the absence of the magnetic field)

are identical to those of Wang [10].
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The local skin friction coefficients for the primary

and secondary flows (Cfx,Cfz) and the local Nusselt

number (Nux) are given by

Cfx ¼ �lðou=ozÞz¼0=qU
2
0 ¼ �Re�1=2

x f 00ð0; t�Þ;

Cfz ¼ �lðov=ozÞz¼0=qU
2
0 ¼ �Re�1=2

x s0ð0; t�Þ;

Nux ¼ xðoT=ozÞz¼0=ðT1 � T wÞ ¼ Re1=2x h0ð0; t�Þ: ð16Þ
3. Analytical solution

It is possible to obtain analytical solutions for the

final steady-state equations (8) and (10) for the primary

flow with k = 0 (s = 0), t* !1, of 0/ot* = oh/ot* = 0

under relevant boundary conditions given in (11). The

solution of (8) satisfying the boundary conditions can

be expressed as

f ðgÞ ¼ ð1þ �1Þb�1ð1� e�bgÞ;
b ¼ ð1þ �1 þMÞ1=2 > 0; ð17Þ

Using (17) in (10), we get

h00 þ Prð1þ �1Þb�1ð1� e�bgÞh0 ¼ 0; ð18aÞ

with boundary conditions

hð0Þ ¼ 0; hð1Þ ¼ 1: ð18bÞ

We now change the independent variable g to n given

by

n ¼ �Ae�bg; A ¼ Prð1þ �1Þb�2 > 0: ð19Þ

From (18) and (19), we obtain

n
d2h

dn2
þ ð1� A� nÞdh

dn
¼ 0; ð20aÞ

with boundary conditions

hð�AÞ ¼ 0; hð0Þ ¼ 1: ð20bÞ

The solution of (20) is given in terms of Kummer�s
function H [17]

hðnÞ ¼ 1� ð�n=AÞA½HðA;Aþ 1; nÞ=HðA;Aþ 1;�AÞ�:
ð21Þ
Table 1

Comparison of surface shear stresses and heat transfer results (�f00(0

k �f00(0) �s0(0) h 0(0)

Pr = 0

0.0 0.9999 (1.0000)a 0.0000 (0.0000) 0.4560

0.5 1.1382 (1.1384) 0.5124 (0.5128) 0.3903

1.0 1.3251 (1.3250) 0.8362 (0.8371) 0.3253

2.0 1.6535 (1.6523) 1.2851 (1.2873) 0.2549

a Results obtained by Wang [10].
In terms of g, (21) can be expressed as

hðgÞ ¼ 1� e�Abg½HðA;Aþ 1;�Ae�bgÞ=HðA;Aþ 1;�AÞ�;
ð22Þ

where

Hða; b; zÞ ¼ 1þ
X1

j¼1

ðaÞjzj

ðbÞjj!
; ð23aÞ

ðaÞj ¼ aðaþ 1Þðaþ 2Þ . . . ðaþ j� 1Þ;
ðbÞj ¼ bðbþ 1Þðbþ 2Þ . . . ðbþ j� 1Þ: ð23bÞ

For �1 = m = 0, Pr = b = 1, (22) reduces to a simple

form

hðgÞ ¼ 1� eðe� 1Þ�1½1� expð�e�gÞ�: ð24Þ

The above results also hold good for t* = 0, but one

has to put �1 = 0.
4. Results and discussion

Eqs. (8)–(10) under boundary conditions (11) and ini-

tial conditions (12)–(15) have been solved by using an

implicit finite-difference method in combination with

the quasilinearization technique [12,13]. The three-point

central-difference formula has been used in g direction

and the two-point backward difference formula in t*

direction. The step sizes used here are as follows:

Dt* = 0.0005 for 0 6 t* 6 0.05, Dt* = 0.005 for

0.05 < t* 6 0.1, Dt* = 0.01 for 0.1 < t* 6 0.5, Dt* = 0.05

for t* > 0.5, Dg = 0.05 and g1 = 10. These step sizes

have been selected after carrying out the sensitivity anal-

ysis on the solutions.

In order to assess the accuracy of our method, we

have compared our steady-state results

(�f 00(0),�s 0(0),h 0(0)) for M = 0 with those of Wang

[10]. The results are found to be in excellent agreement.

The comparison is presented in Table 1. The results for

the case where the impulsive motion is imported to the

surface velocity are given in Figs. 2–8 and for the case

where the impulsive motion is given to the angular

velocity of the fluid in Figs. 9–14.

The variation of the surface shear stress for the pri-

mary flow (�f 00(0, t*)) with time t*(0 < t* 6 1.0) for
),�s 0(0),h 0(0)) with those of Wang [10] for t* = �1 = �2 = M = 0

.7 Pr = 2.0 Pr = 7.0

(0.4550) 0.9117 (0.9110) 1.8977 (1.8940)

(0.3900) 0.8530 (0.8530) 1.8561 (1.8500)

(0.3210) 0.7704 (0.7700) 1.7921 (1.7880)

(0.2420) 0.6382 (0.6380) 1.6684 (1.6640)



1 = -0.2

t*
0.0 0.2 0.4 0.6 0.8 1.0

-f
(0

,t
* )

-1

0

1

2

3

4

5

6

7

8

1 = 0.2

0 2 M=41

Fig. 2. Variation of the surface shear stress for the primary

flow, �f00(0, t*), with time t* for �1 = ±0.2, �2 = 0, 0 6 M 6 4,

k = 0.5.

1 =  -0.2

t*
0.0 0.2 0.4 0.6 0.8 1.0

-s
(0

,t
* )

0.1

0.2

0.3

0.4

0.5

0.6

1 =  0.2 M = 0

0

1

1

2

2

4

4
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�1 = ±0.2, M = 0,1,2,4, �2 = 0, k = 0.5 is given in Fig. 2.

The inset shows the variation of (�f 00(0, t*)) with t* in a

small time interval 0 6 t* 6 0.02. It is found that for

t* > 1, the surface shear stresses (�f 00(0, t*),�s 0(0, t*))

change little with time t*. Hence the results are shown

in the time interval 0 6 t* 6 1. Since the heat transfer

(h 0(0, t*)) takes more time to reach the steady state, it

is shown in the range 0 6 t* 6 5. For �1 = �0.2 (when

the surface velocity is suddenly reduced at t* > 0), in a

small time interval 0 < t* < 0.01, �f 00(0, t*) changes from

a positive to a negative value due to the change in the

sign of the velocity gradient at the wall as explained ear-

lier. However, the vanishing of the shear stress does not

imply separation, because we are considering unsteady

flow over a moving surface [18]. On the other hand,

for �1 = 0.2 (when the wall velocity is suddenly in-

creased), there is no change in the sign of the surface

shear stress, i.e., �f 00(0, t*) > 0 for all times for the rea-

sons explained earlier. Since the surface velocity is

impulsively changed at t* > 0, the surface shear stress

f 00(0, t*) changes significantly in a small time interval

after the start of the impulsive motion. The surface shear

stress for �1 = 0.2 is more than that of �1 = �0.2, because

the boundary layer for �1 = 0.2 is thinner than that for

�1 = �0.2. This reduction is due to the fluid acceleration

induced by the increase in the surface velocity. For a

fixed t*, the surface shear stress f 00(0, t*) increase with

the magnetic parameter M due to the Lorentz magnetic

force.

The variation of the surface shear stresses for the sec-

ondary flow (�s 0(0, t*)) and the surface heat transfer

(h 0(0, t*)) with time t* for �1 = ±0.2, �2 = 0,0 6M 6 4,

k = 0.5 is presented in Figs. 3 and 4, respectively. The

surface shear stress for the secondary flow and the sur-

face heat transfer change monotonically with time t*
and the steady state is reached rather quickly. Unlike

the shear stress for the primary flow, the surface shear

stress for the secondary flow and the surface heat trans-

fer are comparatively less affected by the impulsive

change in the surface velocity, because its effect on them

is indirect. Since the magnetic field has stabilizing effect

on the flow field, it retards the growth of the secondary

flow. Consequently, the surface shear stress for the sec-

ondary flow (�s 0(0, t*)) decreases with increasing M.

The surface heat transfer (h 0(0, t*)) also decreases with

increasing M. The reduction in the heat transfer is due

to the reduction in the axial velocity f. The transition

from the unsteady to the final steady flow takes place

continuously without any singularity. The surface heat

transfer takes more time to reach the steady state than

the surface shear stresses.
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The effect of the rotation parameter k on the surface

shear stresses for the primary and secondary flows

(�f 00(0, t*),�s 0(0, t*)) and the surface heat transfer

(h 0(0, t*)) for �1 = ±0.2, �2 = 0, M = 1, Pr = 0.78 is dis-

played in Figs. 5–7. The surface shear stresses increase

with the rotation parameter k, but the heat transfer de-

creases. Since the increase in the angular velocity of the

fluid accelerates the fluid, the surface shear stresses in-

crease. However, the heat transfer on the surface de-

creases due to the reduction in the axial velocity f.

The effect of the Prandtl number Pr (Pr = 0.027 for

mercury and Pr = 0.78 for lithium–ammonia) on the

surface heat transfer (h 0(0, t*)) for �1 = ±0.2, �2 = 0,
1 =  -0.2

t*
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Fig. 5. Variation of the surface shear stress for the primary

flow, �f00(0, t*), with time t* for �1 = ±0.2, �2 = 0, M = 1,

0.25 6 k 6 2.0.
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M = 1, k = 0.5 is presented in Fig. 8. Since increase in Pr

results in thinner thermal boundary layer, the surface

heat transfer increases with Pr for all t*. For a fixed

Pr, it increases with t* when the surface velocity is in-

creased (�1 > 0), but it decreases with increasing t* for

�1 < 0 (when the surface velocity is suddenly reduced).

The reason for this behaviour is already explained.

The variation of the surface shear stress for the pri-

mary and secondary flows (�f 00(0, t*),�s 0(0, t*)) and the

surface heat transfer (h 0(0, t*)) with time t* for

�2 = ±0.2 (when the impulsive motion is applied to the

angular velocity of the fluid), 0 6M 6 4, �1 = 0,

k = 0.5, Pr = 0.78 is shown in Figs. 9–11. Since magnetic

field has a stabilizing effect on the flow field, it enhances

the surface shear stress for the primary flow (�f 00(0, t*)),
2 = -0.2

t*
0.0 0.2 0.4 0.6 0.8 1.0

-s
(0

,t
* )

0.1

0.2

0.3

0.4

0.5

0.6

2 = 0.2
M = 0

0
2

2

1

1

4

4
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Fig. 11. Variation of the surface heat transfer, h 0(0, t*), with

time t* for �2 = ±0.2, �1 = 0, 0 6 M 6 4, k = 0.5, Pr = 0.78.
but reduces the surface shear stress for the secondary

flow (�s 0(0, t*)). Further, it also reduces the surface heat

transfer (h 0(0, t*)) due to the reduction in the axial veloc-

ity f. Since impulsive motion is given to the rotating

fluid, the effect of time variation is pronounced only

on the surface shear stress for the secondary flow

(�s 0(0, t*)) in a small time interval 0 6 t* < 0.2. The stea-

dy state is reached quickly.

Figs. 12–14 present the effect of the rotation param-

eter k on the surface shear stresses for the primary and

secondary flows (�f 00(0, t*),�s 0(0, t*)) and the surface

heat transfer (h 0(0, t*)) for �2 = ±0.2, �1 = 0, M = 1,

Pr = 0.78. Since the rotation of the fluid (k) gives rise

to the secondary flow, the surface shear stresses for the

primary and secondary flows increase with k. Since
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0.0 0.2 0.4 0.6 0.8 1.0

-f
(0

,t
* )

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2 = 0.2

= 2.0

2.0

1.0

1.0

0.50.25

Fig. 12. Effect of the rotation parameter, k, on the surface shear

stress for the primary flow, �f00(0, t*), for �2 = ±0.2, �1 = 0,

M = 1.
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Fig. 13. Effect of the rotation parameter, k, on the surface shear

stress for the secondary flow, �s 0(0, t*), for �2 = ±0.2, �1 = 0,

M = 1.
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transfer, h 0(0, t*), for �2 = ±0.2, �2 = 0, M = 1, Pr = 0.78.
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the axial velocity f decreases with increasing k due to the

reduction of the boundary layer thickness, the surface

heat transfer decreases with increasing k.
5. Conclusions

The magnetic field and the rotation parameter exert a

strong influence on the surface shear stresses for the pri-

mary and secondary flows and the surface heat transfer.

When the surface velocity is suddenly reduced, the sur-

face shear stress for the primary flow vanishes in a small

time interval after the start of the impulsive motion.

However, it does not imply flow separation, because

we are considering unsteady flow over a moving surface.

Significant changes in the flow and heat transfer take

place only in a small time interval after the start of the

impulsive motion and the final steady state is reached

quickly, i.e. spin-up or spin-down time is rather small.

In general, the surface heat transfer takes longer time

to reach the steady state than the surface shear stresses.
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